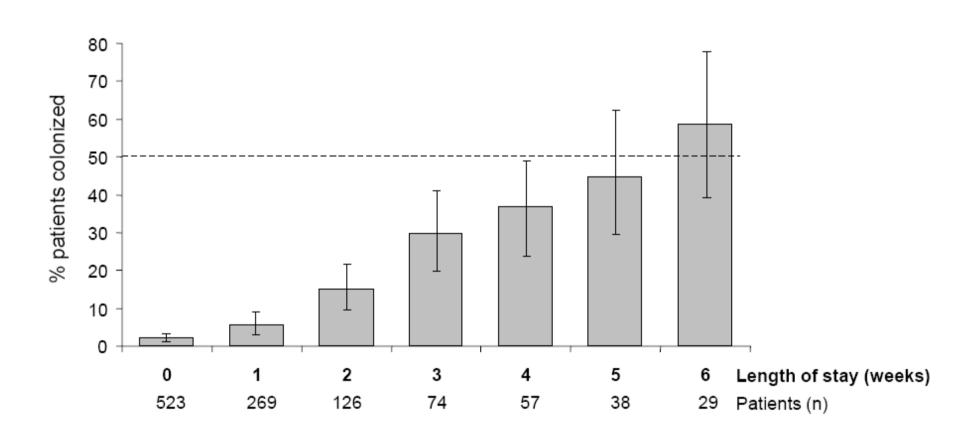
Béta-lactamines:

Faut-il condamner certaines molécules ? Faut-il en remettre d'autres au goût du jour ?

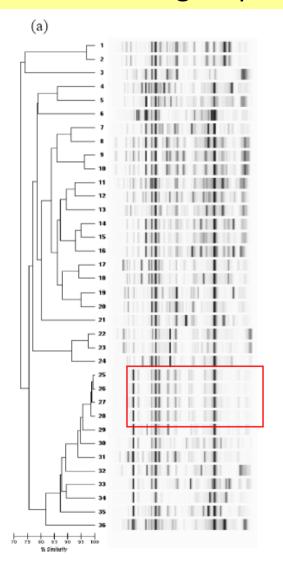
Bruno Fantin Médecine interne, hôpital Beaujon Université Paris Diderot



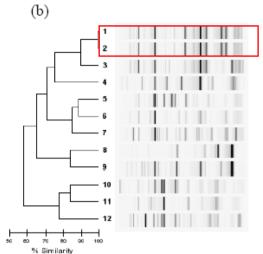
Problématique

- Usage croissant de carbapénèmes
- Résultante de plusieurs phénomènes:
 - Ubiquitaire
 - Pandémie BLSE +++
 - Entérobactéries commensales
 - Hospitalier
 - Entérobactéries AmpC
 - P. aeruginosa
 - Acinetobacter
- Conséquences: résistance potentielle et impasse thérapeutique

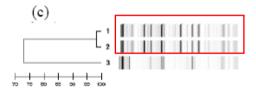
Rates of fecal colonization by imipenem resistant Gram negative bacilli in ICU patients


Armand-Lefevre, AAC 2013

Risk of fecal colonization with imipenem-resistant Gram negative bacilli in ICU patients according to imipenem exposure in days



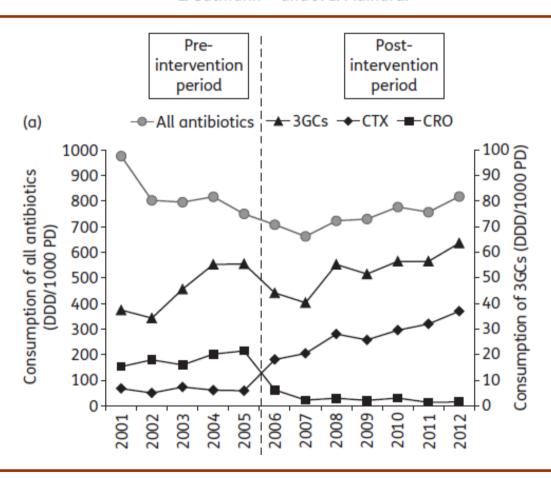
Armand-Lefevre, AAC 2013


Dendrogram and rep-PCR fingerprints showing diversity among imipenem-resistant strains

Pseudomonas aeruginosa

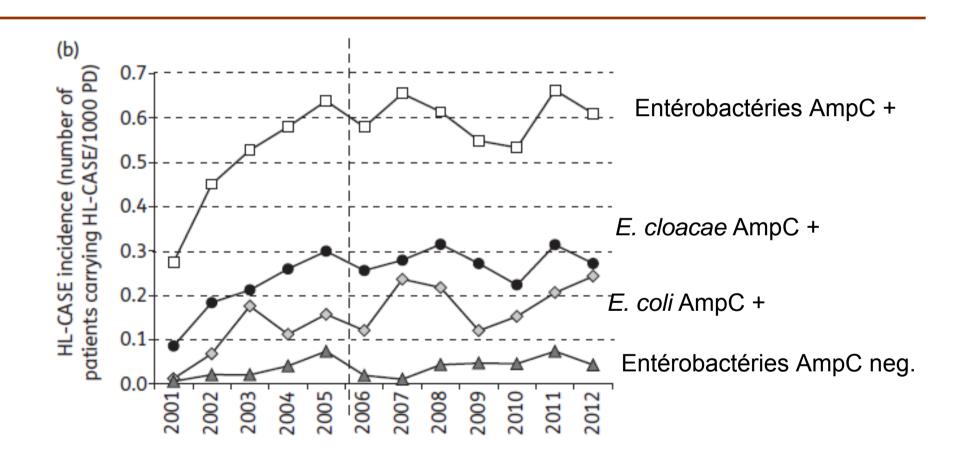
Stenotrophomonas maltophilia

Klebsiella pneumoniae


Armand-Lefevre, AAC 2013

Stratégies d'utilisation des BL: quels critères de choix ?

- Spectre d'activité: pression de sélection
- Fréquence de sélection de mutants résistants
- Effet inoculum
- Impact sur la flore:
 - Anaérobies : « colonization resistance »
 - Bactéries cibles potentiellement pathogènes


Fighting the spread of AmpC-hyperproducing Enterobacteriaceae: beneficial effect of replacing ceftriaxone with cefotaxime

P. Grohs^{1*}, S. Kernéis¹⁻⁵, B. Sabatier^{3,6}, M. Lavollay^{1,4}, E. Carbonnelle^{1,4}, H. Rostane¹, C. Souty⁵, G. Meyer^{3,4,7}, L. Gutmann^{1,4} and J. L. Mainardi¹⁻⁴

Fighting the spread of AmpC-hyperproducing Enterobacteriaceae: beneficial effect of replacing ceftriaxone with cefotaxime

P. Grohs^{1*}, S. Kernéis¹⁻⁵, B. Sabatier^{3,6}, M. Lavollay^{1,4}, E. Carbonnelle^{1,4}, H. Rostane¹, C. Souty⁵, G. Meyer^{3,4,7}, L. Gutmann^{1,4} and J. L. Mainardi¹⁻⁴

Alternatives aux carbapénèmes: dans quelles situations?

- Phenotype de résistance aux C3G:
 - -AmpC
 - -BLSE
- Utilisation:
 - Empirique
 - Documentée

The Use of Cefepime for Treating AmpC β-Lactamase–Producing Enterobacteriaceae

Pranita D. Tamma, Sonya C. T. Girdwood, Ravindra Gopaul, Tsigereda Tekle, Ava A. Roberts, Anthony D. Harris, Sara E. Cosgrove, and Karen C. Carroll

- Activité in vitro du cefepime versus entérobactéries productrices de AmpC:
 - pas d'induction de AmpC chez les souches exprimant un bas niveau (à l'inverse des C3G)
 - chez les souches exprimant AmpC à haut niveau:
 - faible affinité pour enzyme
 - activité in vitro conservée (cc CLSI : 8 mg/L)
- Réserves:
 - impact d'un fort inoculum in vitro et in vivo
 - sélection possible de mutants sous traitement

Cefepime and the inoculum effect in tests with Klebsiella pneumoniae producing plasmid-mediated AmpC-type β-lactamase

Cheol-In Kang¹, Hyunjoo Pai², Sung-Han Kim¹, Hong-Bin Kim¹, Eui-Chong Kim^{3,4}, Myoung-don Oh^{1,4}* and Kang-Won Choe^{1,4}

Table 1. MICs for ESBL- or AmpC-producing K. pneumoniae isolates according to inoculum

	ES	SBL-produc	ing K. pn			ntibiotics	at inocula of 10^5 and 10^7 cfu/mL AmpC-producing K. pneumoniae ^c (n = 28)					
		10 ⁵			10 ⁷			10 ⁵			10 ⁷	
Antibiotics	range	50%	90%	range	50%	90%	range	50%	90%	range	50%	90%
CTX CAZ FEP IPM	1->256 1->256 1-128 ≤0.25-4	64 128 8 0.25	256 256 64 0.5	>256 >256 >256 0.5-8	>256 >256 >256 1	>256 >256 >256 4	8->256 16->256 ≤0.25-16 ≤0.25-1	64 128 1 0.25	>256 >256 4 0.5	>256 >256 16->256 0.5-8	>256 >256 256 4	>256 >256 >256 >256 8

The Use of Cefepime for Treating AmpC β-Lactamase–Producing Enterobacteriaceae

Pranita D. Tamma, ¹ Sonya C. T. Girdwood, ² Ravindra Gopaul, ⁵ Tsigereda Tekle, ³ Ava A. Roberts, ³ Anthony D. Harris, ⁶ Sara E. Cosgrove, ⁴ and Karen C. Carroll ³

- Etude rétrospective (2010-12 J. Hopkins)
- Infections documentées à Serratia, Enterobacter ou Citrobacter
- Souches sensibles cefepime et meropeneme
- Confirmation production AmpC par 2 méthodes phénotypiques
- Cepefime vs meropeneme : 1-2 gr x 3 /j
- Traitement empirique puis au moins 72h
- Pneumonie, IIA et bactériémie

The Use of Cefepime for Treating AmpC β-Lactamase–Producing Enterobacteriaceae

Table 3. Thirty-Day All-Cause Mortality for Patients With AmpC β-Lactamase—Producing Organisms Treated With Cefepime Compared to Meropenem

	Unadjusted Analysis o Cohort (n = 6		Adjusted ^a Analysis of Matched Cohort (n = 64)			
Covariate	Odds Ratio (95% CI)	P Value	Odds Ratio (95% CI)	P Value		
Cefepime ^b	0.60 (.21-1.63)	.30	0.63 (.23–2.11)	.36		
Age, y	0.99 (.96-1.01)	.26				
Previous MDRGN	0.80 (.22-2.91)	.74				
Intensive care unit stay	2.60 (.88-7.68)	.08				
McCabe score ^c	2.63 (1.88-5.68)	.04				
Immunocompromised	1.78 (.61-5.11)	.29				
Mechanical ventilation	3.00 (1.01-8.95)	.04				
Vasopressors	2.65 (.90-7.80)	.08				

- Malades sous mero. plus souvent BMR, immunodéprimés et comorbidités
- Bon contrôle du foyer infectieux dans > 93% des cas
- Pas de différence de mortalité à 30j (Cef: 31 % vs mero: 34%) même après ajustement
- Pas de sélection de mutants résistants

Céfepime vs carbapénèmes vs entérobactéries AmpC

- Activité clinique comparable
- Sur documentation bactériologique
- Foyer initial contrôlé
- Absence d'activité vs E-BLSE rend l'usage empirique limité

BLSE: Alternatives aux carbapénèmes

- Hydrolyse C3G
- Synergie C3G-inhibiteurs
 - Pas d'hydrolyse des céphamycines

E-BLSE françaises : sensibilité aux Beta-Lactamines

Bert et al.: 400 souches de EBLSE, Hôpital Beaujon, Nov 11-Août 12

215 E. coli, 104 K. pneumoniae, 67 E. cloacae, 14 autres

Fournier et al.: 100 E. coli BLSE, inf urinaires, CHU Besançon, Juin 09-Sept 10

	Bert	Fournier
	EBLSE	E. coli BLSE
C3G ou ATM	27%	CAZ 27%
AMX/Clav	21,7%	40%
PIP/TAZ	70,5%	80%
Céfoxitine	65,3%	90%
Amikacine	87%	90%
Tétracycline	33,7%	Tigé: 99%
Ciprofloxacine	23,7%	28%
Cotrimoxazole	37,3%	28%
Fosfomycine		99%

^{*}CTX, CAZ, FEP, conc. critiques CASFM 2013

β-Lactam/β-Lactam Inhibitor Combinations for the Treatment of Bacteremia Due to Extended-Spectrum β-Lactamase–Producing *Escherichia coli*: A Post Hoc Analysis of Prospective Cohorts

- Analyse rétrospective de 6 études prospectives non randomisées
- Patients consécutifs avec bactériémie à E-BLSE
- Traités par IBLBL ou carbapenème au moins 48 h
- 2 cohortes d'étude non exclusives:
 - cohorte empirique:
 - traitement empirique par carbapeneme ou IBLBL
 - débuté < 24h après hémoc prélevée
 - souche sensible à l'antibiotique utilisé
 - cohorte documentée:
 - traitement documenté par carbapéneme ou IBLBL > 50% du temps de traitement antibiotique

Table 2. Characteristics of Patients With Bloodstream Infections (BSIs) Caused by Extended-Spectrum β -Lactamase-Producing Escherichia coli, According to Therapy^a

	Empi	irical Therapy Cohort	Definitive Therapy Cohort				
Characteristic	BLBLI (n = 72)	Carbapenem (n = 31)	Р	BLBLI (n = 54)	Carbapenem (n = 120)	Р	
Age, median y (IQR)	69 (59–80)	60 (52–78)	.1 ^b	67 (56–83)	70 (55–78)	.3 ^b	
Male sex	29 (40.3)	11 (35.5)	.6	34 (63)	70 (58.3)	.5	
Nosocomial acquisition	26 (36.1)	24 (77.4)	<.001	18 (33.3)	67 (55.8)	.006	
Charlson index, median, (IQR)	2 (1-5)	2 (1–5)	.66	2.5 (1–5)	3 (1–5)	.5 ^b	
Cancer	21 (31.9)	11 (35.5)	.7	15 (27.8)	43 (35.8)	.2	
Immunosuppression	5 (6.9)	5 (16.1)	.1 ^c	3 (5.6)	15 (12.5)	.1	
Neutropenia	2 (2.8)	3 (9.7)	.1°	0	7 (5.8)	.1°	
Urinary or biliary tract as source	52 (72.2)	18 (58.1)	.1	42 (77.8)	79 (65.8)	.1	
ICU admission	7 (9.9)	2 (6.7)	.7 ^c	4 (7.4)	18 (15.4)	.1	
Severe sepsis or shock at presentation	14 (19.4)	9 (29.0)	.2	8 (14.8)	32 (26.7)	.08	
Pitt score, median (IQR)	1 (0-2)	1 (0-2)	.7 ^b	1 (0-2)	1 (1–2)	.04 ^b	
CTX-M enzyme	57 (80.3)	25 (86.2)	.4	43 (82.7)	95 (81.2)	.8	

Traitement et résultats cliniques

- Traitements de l'étude
 - PTZ: 4500 mg/6 h
 - Augmentin: 1200/8h
 - Imipeneme: 500/6h
 - Meropeneme: 1g/8h
 - Ertapeneme: 1 g/24h
- Mortalité IBLBL vs carbapeneme (P > .1)
 - J7: 2.8 vs 9.7%
 - J14: 9.7 vs 16.1 %
 - J30: 9.7 vs 19.4 %

Table 4. Cox Regression Analysis of Associations Between Different Variables and Mortality in the Definitive Therapy Cohort

	Crude Analy	sis	Adjusted Analysis		
Variable	HR (95% CI)	Р	HR (95% CI)	Р	
Male sex	1.2 (.46–2.29)	.9			
Age ^a	1.00 (.97-1.02)	.9			
Nosocomial BSI	0.99 (.45-2.22)	.9			
Charlson index ^a	1.02 (.88-1.28)	.7			
Neutropenia	1.78 (.88-13.32)	.5			
High-risk source ^b	2.07 (.94-4.54)	.06			
Pitt score ^a	1.49 (1.26-1.78)	<.001	1.38 (1.12-1.70)	.002	
Severe sepsis or shock ^c	3.64 (1.66-7.99)	.001	2.10 (.87-5.05)	.09	
Empirical therapy with BLBLI	0.56 (.18-1.73)	.3			
Inappropriate empirical therapy	1.76 (.78-3.93)	.1			
Definitive therapy with BLBLI ^d	0.66 (.24-1.76)	.4	0.76 (.28–2.07)	.5	

Rodriguez-Bano, CID 2012

- Limites de l'étude:
 - non randomisée
 - porte d'entrée urinaire ou biliaire chez 2/3 des patients
- Confirmation des données par méta-analyses sur usage empirique ou documenté

Effet inoculum in vitro augmentin vs pipe/tazo

TABLE 1. MICs of β -lactams and β -lactam- β -lactamase inhibitors for non-extended-spectrum β -lactamase-producing Escherichia coli strains determined with two bacterial inocula

		MIC	MIC (mg/L)							
		AT 259		J53 Az ^R						
Antibiotic	Method	S	н	s	н					
Amoxycillin	Broth	4	4	2	2					
· .	Agar	4	8	2	4					
Amoxycillin–clavulanate (2 : 1)	Broth	4	4	2	2					
	Agar	4	8	2	8					
Amoxicyllin-clavulanate (4 : I)	Broth	4	4	4	4					
	Agar	8	8	2	8					
Piperacillin	Broth	2	>256	- 1	256					
·	Agar	2	32	0.5	16					
Piperacillin-tazobactam (4 mg/L)	Broth	2	256	П	256					
	Agar	- 1	32	0.5	16					
Piperacillin-tazobactam (8 : 1)	Broth	2	>256	1	64					
	Agar	2	64	0.5	16					

S, standard inoculum for every method according to CLSI guidelines; H, 100-fold standard inoculum.

Effet inoculum in vivo IBLBL vs imipeneme

	Low inoculum concentration	n		High inoculum concentration	High inoculum concentration					
Strain and treatment f	Bacterial concn in spleen (log ₁₀ CFU/g)	% of blood % cultures positive Mortality		Bacterial concn in spleen (log ₁₀ CFU/g)	% of blood cultures positive	% Mortality				
ATCC 25922										
Control	8.68 ± 0.35	100	100	8.02 ± 0.16	100	100				
AMC	2.88 ± 1.21^a	40 ^a	$0^{a,b}$	$3.89 \pm 1.71^{a,b,c}$	60 ^a	$0^{a,b}$				
TZP	$4.1 \pm 2.69^{a,e}$	60 ^a	$53.3^{a,e}$	6.63 ± 0.36^a	85.7	100				
IPM	$3.46 \pm 1.46^{a,\epsilon}$	33.3 ^a	$0^{a,b}$	$5.6 \pm 1.1^{a,b}$	73.3	$6.7^{a,b}$				
Ec1062										
Control	8.57 ± 0.33	100	68.8^{ε}	8.19 ± 0.87	100	100				
AMC	$4.49 \pm 0.18^{a,b,\epsilon}$	66.7 ^a	0^a	$6.11 \pm 0.2^{a,b}$	73.3	0^a				
TZP	$6.26 \pm 0.84^{a,e}$	86.7	6.7^{a}	6.99 ± 0.99^a	80	26.7^{a}				
IPM	$4.08 \pm 0.37^{a,b,d,e}$	$26.7^{a,b}$	0^a	$5.97 \pm 0.16^{a,b}$	66.7 ^a	0^a				

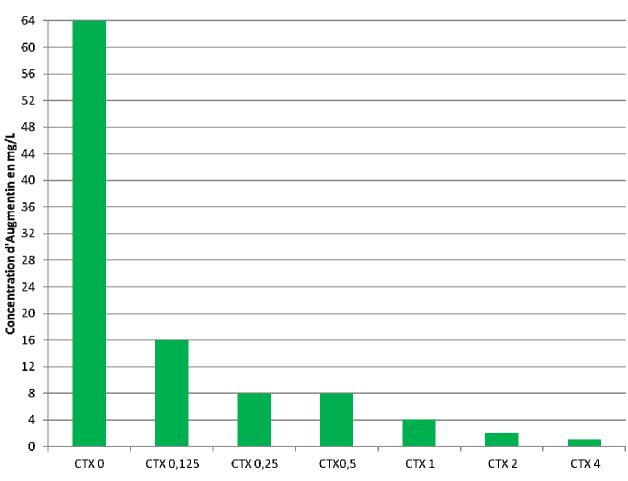
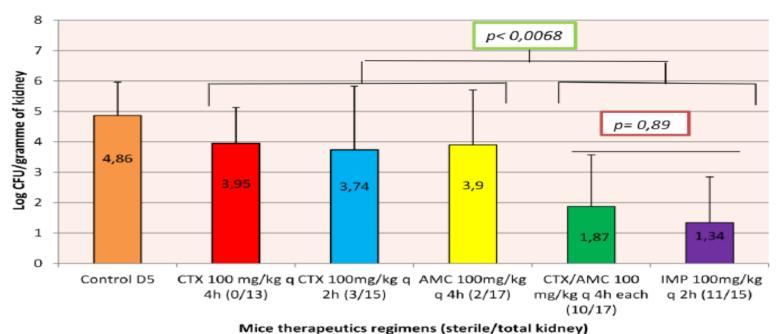
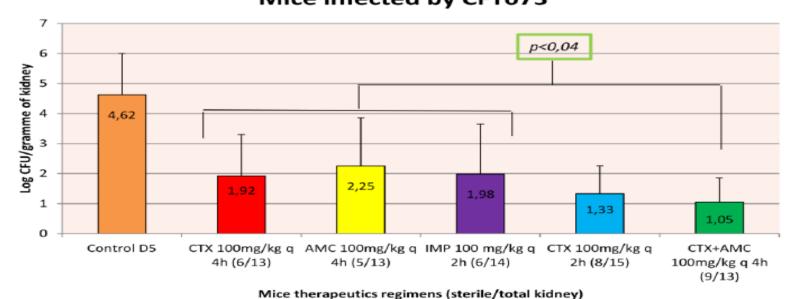

Intérêt potentiel de l'association C3G/augmentin vs E-ESBL *in vitro*

Table 1. Activity of clavulanate–cephalosporin combinations vs. extended-spectrum β -lactamase (ESBL)-producing Enterobacteriaceae, collected in the UK in 2004

		No. o	f isolat	es wit	h ind	icate	d M	IC (n	ng/L))					
		≤0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Escherichia coli	Cefotaxime Cefotaxime + clavulanate	150	162	2 52	1 12		10	17	30	33	48	22	26	49(142
Enterobacter spp.		100		<u></u>		•			2	5	13	5	5	5	1
	Cefotaxime + clavulanate		2				4		2	6	7 ^b				
Klebsiella spp.	Cefotaxime		1ª	3	1	1	1		5	9	2	8	24	80	91
	Cefotaxime + clavulanate	79	80	42	18	1	1	1	1		3 ^b				


AMC + CTX vs CFT073 Tc bla_{CTX-M-15} in vitro

CMI de l'AMC en fonction des concentration de céfotaxime



Rossi, ICAAC 2013

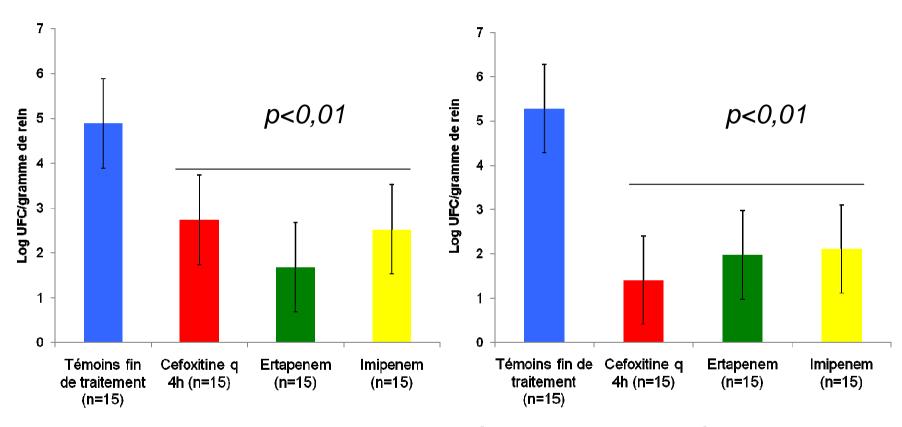
Mice infected by CFT073

IBLBL vs carbapénèmes vs E-BLSE

- Options pour traitement en relai sur documentation microbiologique
- Usage empirique?
 - 70-80 % souches cliniques E-BLSE sensibles Pipe/tazo
 - Taille inoculum +++
 - Gravité
- Intérêt potentiel de l'association CTX/augmentin à évaluer chez l'homme

Céphamycines

- Découvertes dans les années 70
- Pas d'hydrolyse par les BLSE : encombrement stérique du groupement 7 α methoxy
- Hydrolysées par les céphalosporinases de type AmpC
- Céfoxitine actuellement seule disponible en France


Cefoxitine: activité in vitro

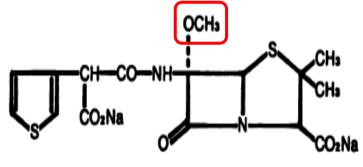
Souches d' <i>E. coli</i>		CMI(μg/ml)				
(plasmide)						
	FOX	IMP	ETP			
CFT073-RR	4	0,5	0,016			
CFT073-RR Tc(bla _{CTX-M-15})	4	0,5	0,032			

Cefoxitine: proportion de mutants résistants

Souches d' <i>E. coli</i> (plasmide)	Proportion de mutants résistants						
	FOX	IMP	ETP				
CFT073-RR	$0.06 \pm 0.12 \times 10^{-8}$	7,79 ± 13,3 X 10 ⁻⁸	$5,31 \pm 15 \times 10^{-8}$				
CFTO73-RR Tc(bla _{CTX-M-15})	0,65 ± 1,77 X 10 ⁻⁸	19,3 ± 27,2 X 10 ⁻⁸	7,14 ± 8,93 X 10 ⁻⁸				

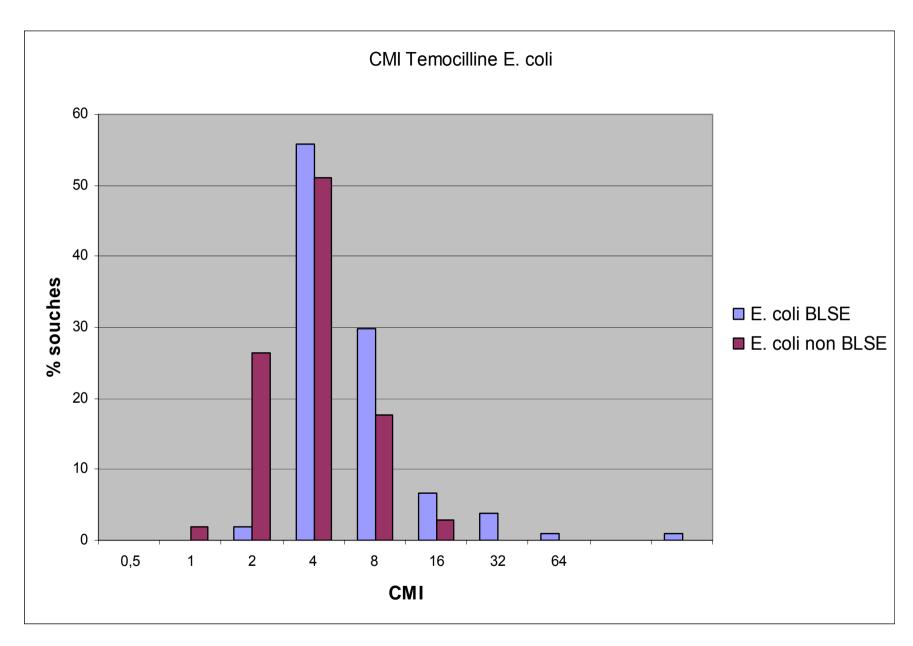
Thérapeutique : comptes bactériens dans les reins

Souris infectées par CFT-RR


Souris infectées par CFT-RR Tc (pbla_{CTX-M-15})

Cefoxitine: limites potentielles

- Courte demi-vie d'élimination
- Sur documentation uniquement
- Mutants vs K. pneumoniae?
- Etude PK/PD chez l'homme en cours (FOXICOLI)


Témocilline

- Dérivé 6-α-méthoxylé de la ticarcilline
- Commercialisée dans les années 80

Principales caractéristiques :

- stabilité à l'hydrolyse par les β -lactamases incluant AmpC et BLSE
- spectre d'activité réduit aux entérobactéries

Données non publiées

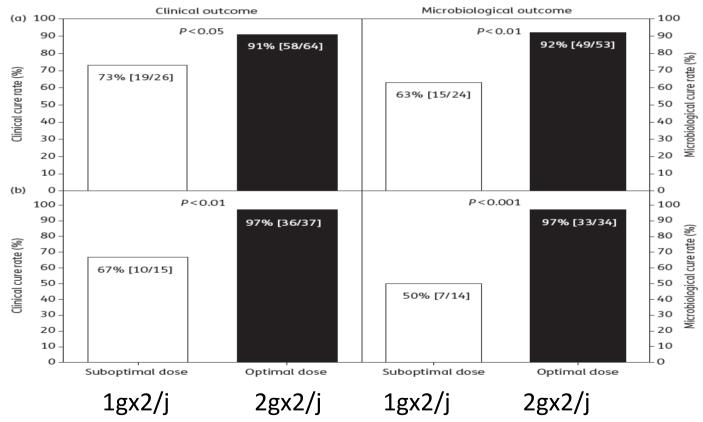
Temocilline: activité in vivo

	Minimum Inhibitory Concentrations (μg/ml)							
	10 ³ CF	U/ml	10⁵ CF	U/ml	10⁵ CFU albur	-	10 ⁷ CF	U/ml
E. coli strains	TEMO	IMP	TEMO	IMP	TEMO	IMP	TEMO	IMP
CFT073-RR	8	0.25	32	0.5	128	0.5	32	1
CFT073-RR Tc p89	8	0.5	32	0.5	128	0.5	64	1
CFT073-RR Tc pC15-1a	8	0.5	32	0.5	128	0.5	64	1

Temocilline: pharmacocinétique chez l'homme

- Fixation protéique importante : 85%
- Demi-vie d'élimination prolongée $\simeq 5h$
- Posologie: 2g/12h IV

Temocilline: activité in vivo


Results (Log₁₀ CFU/g of kidney ± SD [no. sterile/total no.])

<i>E. coli</i> strains	start-of-treatment control	Temocillin	Imipenem	Cefotaxime
CFT073-RR	4.84 ± 1.20	2.10 ± 1.70	1.98 ± 1.67	1.33 ± 0.93
	(1/20)	(9/21)	(6/14)	(8/15)
CFT073-RR	4.89 ± 0.69	1.43 ± 1.52	1.34 ± 1.50	3.74 ± 2.09
Tc p89	(0/22)	(14/22)	(12/15)	(3/15)

Pas de mutants in vivo

Témocilline dans les infections sytémiques à entérobactéries

- Etude rétrospective, 92 patients, 53/92 BLSE et/ou dAmpC
- Temocilline > 3 jours pour UTI, bactériémie ou HAP
- Influence de la posologie
- Influence de BLSE/dAmpC si 1 g x 2, pas si 2 g x 2/24h

Temocilline: intérêts et limites potentielles

- Spectre limité aux entérobactéries
- Activité vs AmpC et BLSE
- Limites potentielles:
 - Fixation protéique
 - Effet inoculum
- Intérêt réel en empirique dans infections urinaires compliquées
- Disponible au Benelux et UK